您好,欢迎来到金属加工网 登录 | 免费注册 | 忘记密码
当前位置: 首页 > 技术中心 > 解决方案 > 借助分步仿真优化增材制造工艺

借助分步仿真优化增材制造工艺

http://www.b2b.hc360.com 中国金属加工网 信息来源:Author发布时间:2019年09月04日浏览:263

  增材制造有着广泛的应用,例如制造定制医疗设备、航空航天器材和艺术品。随着潜在用途的不断增加,增材制造能够满足需求是非常重要的。然而,分析和优化这个复杂的过程可能很困难。工程技术人员能做哪些工作来克服这个挑战呢?


  增材制造的多功能性

  增材制造是通过逐层添加444444444444一种或多种材料来创建三维对象的过程。法国国立高等矿业电信学校联盟所属的里尔-杜埃高等国立矿业电信学校的Frédéric Roger教授对这种类型的制造有如下观点。(IMT是一家法国公共机构,致力于工程和数字技术的高等教育、研究和创新。)

  Roger教授说,从某种意义上看,增材制造与缝纫或编织有点类似。这两种过程都是通过控制不同原材料的合并方式来创造异质成品。在编织中,材料通常是线和纱,而增材制造可以使用多种材料,包括聚合物、金属合金、陶瓷和复合材料。

205.jpg

image.png

  选择合适的材料对于生产理想的成品来说非常重要,无论是一条温暖的毯子(上图:我的祖母编织的),还是一个定制的航空航天部件(下图),都是如此。

  材料的广泛性意味着增材制造可用于设计许多行业中的大量独特物品。例如,Roger提到,通过使用合适的材料和热力学条件,工程技术人员可以制造出能够承受或适应恶劣环境条件的物品。这些物品甚至可以通过改变形状或释放被基质捕获的化学物质(如药物)来适应特定的温度或化学条件。随着时间的推移,转换将为打印部件再增加一个维度,从而产生“四维打印”。

image.png

  有时,增材制造零件的灵感源于自然形态,比如图中的仿生示例。

  Roger认为,增材制造带来的许多机遇使其成为“不可或缺的制造工艺”,原因是它“提供了用先进材料开发优化结构的新机会”。然而,工程技术人员必须先改进增材制造工艺才能创造出这些结构。


  应对增材制造仿真的挑战

  增材制造是一个复杂的过程,因此很难研究。这项技术因所涉及的材料和增材制造的具体类型而异。研究这个过程还需要考虑许多不同的影响因素,例如:

  多相变

  能量、质量和动量的传递

  烧结

  光聚合

  干燥

  结晶

  变形

  应力


  为了分析这些因素的影响,工程技术人员可以使用COMSOL Multiphysics®软件,Roger认为这是“一款独一无二的软件,它在增材制造仿真方面具有强大的优势。”该软件不仅能帮助工程技术人员“优化增材制造工艺,还能预测力学和微观结构对产品的影响。”借助这一软件,工程技术人员可以使用所有相关的物理场,确定理想的制造条件和零件几何结构,以平衡刚度、减重和散热的需求。”

image.png

  上:增材制造过程示例,其中涉及许多不同的物理场。


image.png

  下:由两种材料制成并填充有蜂窝内部结构的增材制造零件示例。


  他们面临的挑战在于,在耦合相关物理场的同时分析增材制造过程会导致模型尺寸变大且计算时间变长。为了克服这一难题,Roger实施了多种不同的仿真策略,例如激活网格属性、采用自适应网格重新划分和执行序贯仿真。

  通过采用序贯方法,Roger能够更好地分析增材制造过程中材料热力学状态的连续性。同时,这种方法随着时间的推移将多物理场耦合解离,有助于降低多物理场耦合的复杂性。因此,序贯仿真能够在降低计算成本的同时进行全面建模并优化增材制造过程。


  通过多物理场仿真优化增材制造零件

  在仿真过程中,Roger和他的团队成员专注于熔融沉积成型(FDM®),这是一种常见的增材制造技术,既实惠又能控制工艺参数。该研究的目的是优化打印的热塑性零件的内部和外部几何结构,并获得最佳性能。为了有效实现这些目标,团队成员将他们的分析分成三个部分,如下所述。


  第1部分:外部零件几何结构的拓扑优化

  在第一部分研究中,研究人员希望尽量减小打印结构的总重量,同时保持最大化刚度状态的材料分布。为此,他们使用拓扑优化和结构力学分析来研究承受拉伸载荷的机械结构。

image.png

  原始几何结构和边界条件

image.png

      通过颜色对比定义最佳形状的杨氏模量分布。

  图片来自COMSOL用户年会2015格勒诺布尔站的演讲材料。


  通过研究,他们找到了零件的最优形状,确定了形状的中间位置具有最高应力水平。因此,研究人员根据应力集中场将结构划分为多个域:中间的高应力区域,以及周围的两个低应力区域。在接下来的研究中,他们利用这些信息将特定的制造条件应用于高应力区域。

image.png

  优化的几何结构中的应力场。


  第2部分:优化的三维零件的填充策略比较

  在第二部分研究中,研究人员主要通过测试两种可能的填充策略来增强高应力区的稳定性:

  具有可变密度的非均质填料

  多材料填料

  在非均质填料案例中,团队成员通过使用更高密度的填充物,在中间高应力区域创建了一个更具抵抗力的域。同时,他们通过使用更少的材料来最小化外部区域的重量。结果表明,理想的几何结构在高应力区包含60%的材料,在低应力区包含20%的材料。

image.png

  使用一种密度可变的材料打印优化的零件。

  如下图所示,在多材料案例中,零件的两端使用红色的ABS塑料,中间则使用机械性能得到改进的黑色导电ABS。研究人员发现,他们可以用类似于ABS的材料来代替导电ABS,这种类似的材料具有增强的过滤器,可以增加刚度。

image.png

  使用两种材料打印优化的零件。


  第3部分:熔融热塑性塑料沉积的传热分析

  在优化三维打印零件的内部和外部设计之后,研究人员对熔融热塑性塑料沉积过程进行了建模,并评估了制造参数。仿真结果帮助他们准确预测热历史、润湿条件、聚合物结晶、细丝之间的相互作用以及残余应力和应变。以下示例描述了加热和冷却过程中的塑性应变。

  在这项研究中,研究人员还分析了薄壁管前两层的传热和质量传递。随后,他们能够分析塑料液滴沉积过程,并确定细丝达到熔化温度的区域。材料沉积研究的动画如下所示,其中描绘了一个热源沿着沉积模式移动,并将细丝加热到熔化温度,对ABS液滴来说,熔化温度约为230℃。仿真中的挤出机路径域已预先划分了网格,网格根据挤出机的位置不断被激活。

  通过这些仿真,Roger和团队成员预测了沉积过程中细丝之间的温度场,这是影响细丝粘附的一个重要因素。类似的分析可以帮助研究人员比较不同的增材制造条件,并确定特定应用的最佳沉积策略。


  增材制造仿真总结

  Roger表示,通过这些仿真,他的团队成员能够“定义增材制造零件,使其内部和外部架构为零件提供最佳的工业性能。”当然,这仅仅是将增材制造与多物理场仿真相结合的一个开端。


分享到:0

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品 均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

【我要评论】 【全部评论(共0条)】

  • 还可输入(1000个字符)
  • *网友评论仅供其表达个人看法,并不表明中国金属加工网同意其观点或证实其描述
精华文章

拼焊板焊接:二极管激光器提高工艺质量和效率

通常来说,所有类型的激光器都适合于拼焊板焊接。然而,这些激光器在焊接性能[更多]

数字未来,融合创新:费斯托展示最新标准产品及模组化方案

费斯托将参展2018年3月14-16日慕尼黑上海电子生产设备展(展台号:E1-1608[更多]

蔡司|质量控制循环:提高生产力的关键

质量数据是优化制造工艺的基础。ZEISS AIMax twin和ZEISS AIMax twin UV是蔡[更多]

瑞萨电子推出RX72M工业网络解决方案,可支持主要通信协议

9月11日消息,全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)[更多]

国内首创“间接金属3D打印纯铜”,升华三维避开SLM激光高导热、高反射

据悉,2019年10月15-17日,升华三维将携带主力机型和材料品类丰富的3D打印金[更多]